Function approximation based on fuzzy rules extracted from partitioned numerical data
نویسندگان
چکیده
We present an efficient method for extracting fuzzy rules directly from numerical input-output data for function approximation problems. First, we convert a given function approximation problem into a pattern classification problem. This is done by dividing the universe of discourse of the output variable into multiple intervals, each regarded as a class, and then by assigning a class to each of the training data according to the desired value of the output variable. Next, we partition the data of each class in the input space to achieve a higher accuracy in approximation of class regions. Partition terminates according to a given criterion to prevent excessive partition. For class region approximation, we discuss two different types of representations using hyperboxes and ellipsoidal regions, respectively. Based on a selected representation, we then extract fuzzy rules from the approximated class regions. For a given input datum, we convert, or in other words, defuzzify, the resulting vector of the class membership degrees into a single real value. This value represents the final result approximated by the method. We test the presented method on a synthetic nonlinear function approximation problem and a real-world problem in an application to a water purification plant. We also compare the presented method with a method based on neural networks.
منابع مشابه
FRULEX - Fuzzy Rules Extraction Using Rapid Back Propagation Neural Networks
In this paper, we present a new approach for extracting fuzzy rules from numerical inputoutput data for pattern classification. The approach combines the merits of the fuzzy logic theory, and neural networks. The proposed approach uses rapid back propagation neural network (RBPNN), which can handle both quantitative (numerical) and qualitative (linguistic) knowledge. The network can be regarde...
متن کاملUniversal Approximation of Interval-valued Fuzzy Systems Based on Interval-valued Implications
It is firstly proved that the multi-input-single-output (MISO) fuzzy systems based on interval-valued $R$- and $S$-implications can approximate any continuous function defined on a compact set to arbitrary accuracy. A formula to compute the lower upper bounds on the number of interval-valued fuzzy sets needed to achieve a pre-specified approximation accuracy for an arbitrary multivariate con...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملA neuro-fuzzy system modeling with self-constructing rule generationand hybrid SVD-based learning
We propose a novel approach for neuro-fuzzy system modeling. A neuro-fuzzy system for a given set of input-output data is obtained in two steps. First, the data set is partitioned automatically into a set of clusters based on input-similarity and output-similarity tests. Membership functions associated with each cluster are defined according to statistical means and variances of the data points...
متن کاملLearning Fuzzy Rule-Based Neural Networks for Function Approximation
In this paper, we present a method for the induction of fuzzy logic rules to predict a numerical function from samples of the function and its dependent variables. This method uses an information-theoretic approach based on our previous work with discrete-valued data [3]. The rules learned can then be used in a neural network to predict the function value based upon its dependent variables. An ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 29 4 شماره
صفحات -
تاریخ انتشار 1999